
Offline Navigation & Maps
Engine from scratch

Data, Processing, Fetching,
Rendering, Search and Navigation

Evgeny Karpov - Software Engineering @ kMaps LLC

@eukarpov kmaps.co

When is offline needed?
Traveling

Limited data plans
Poor network coverage
Overloaded networks

Self-driven cars
Connected cars

Privacy
Disasters

and many other reasons
and domains

// OfflineNavigationApp.cpp

int main(int argc, const char * argv[]) {

 // Type your code here

 return 0;
}

• No SQL, NON-SQL and GEO
oriented Databases

• No frameworks, APIs and 3rd
party components

• No graphical frameworks

• No multi-languages libraries

What does “from scratch” really
mean?

What do we need to
implement?

• Getting and Processing Data

• Building Vector Tile Storage

• Hosting, Fetching and Caching
tiles

• Fetch function and Rendering tiles

• Indexing tiles and search

• Building routing tiles

• Routing from point to point

• Turn by turn navigation

Where can I get data of the
entire world?

• Open Street Map

• The entire world

• 400M+ Points of Interest

• Navigation metadata

How to process data
without any database?

• Converting to binary
representation

• Points

• Geometry

• Relations

• Metadata

1100101001010011100101
0111000001

How to build vector tile
storage?

• Understanding algorithms

• kdTree, quick sort, partitioning,
balancing tree

• Broken polygons should be fixed

• Triangulation can be done on
server side

• Cutting tiles

• Building tile pyramid

• Compressing tiles

kdTree Vector Tiles

 Tile storage file

How to host the tile storage and
fetch data on the client side?

• Simple, cheap, fast and
friendly SSD hosting (for
example Digital Ocean)

• Simple web server (NGINX)

• No backend

• Privacy

• Caching tile storage kdTree on
client side

• Caching tiles by request with
HTTP range request

Hosting

OK. I have data on the client
side. But how to render?

• OpenGL ES >= 2.0

• Power of shaders

• Implementing Rendering Loop

• Fetching required tiles

• Converting vector tiles to GPU
tiles

• Triangulation

• Managing tiles in GPU

I have heard of shaders before. But what
does it look like and how do I render

POIs?

• Projection shaders

• Writing shaders for different
type of objects

• Separate task for fetching
POIs

• Triangulating fonts

• Rendering POIs

vec4 geo_sphere_projection(float lon, float lat,
float radius) {
lon = radians(lon);
lat = radians(lat < -85.0 ? -90.0: lat);

 return vec4(radius * cos(lon) * cos(lat), radius
* sin(lon) * cos(lat), radius * sin(lat), 1.0);
}

vec4 merkator_projection(float lon, float lat) {
return vec4(0.99 * lon / 180.0, 0.99 *
log(tan(radians(45.0) + radians(lat)/2.0)) /
radians(180.0), 0.5, 1.0);
}

Is there any best practice to
render with OpenGL?

• Limitation of vertex on
different platforms

• Using Vertex Array Objects,
Vertex Buffer Objects, Index
Array Objects

• Exclude branches and loops
in shaders

• Measuring Vertex and
Fragment performance

How is the user interface
integrated with rendering?

• Moving the map

• Rotating the map

• Zooming In/OUT

• Changing angle

• Accessing a POI by user
interaction (click on the map)

• Standard map gestures

Maps without search are almost
useless. How to search?

• Using UTF8 to support
multiple languages

• Unicode normalization and
lowercase transformation

• Indexing tile metadata on the
fly

• Merging Inverted Indexes

• Boolean search

Building routing tiles

• Building routing tiles on the fly
base on vector tiles

• Graph simplification

• Routing metadata

• Graph serialization

Routing tiles are done. How
to implement simple routing?

• Finding start and end nodes
for routing

• Using classical A* algorithm

• Art of writing heuristic
functions

• Performance optimization for
fetching routing tiles

• Reconstruction of real path

Now we need to navigate
user to destination

• Calculating all turns and
branches on the path

• Informing user in advance

• Using location to detect when
the route should be
recalculated

Got it! How does it look all
together?
Data Open Street Map

The Entire World
Tile Storage File

Hosting

Rendering Loop

Fetching tiles

Downloading
Tiles

Converting Vector
Tiles to GPU

Indexing
Vector Tiles

Cached
Vector Tiles

Building
Routing Tiles

Preparing POIs

Rendering frame

Cached GPU tiles

POI visualization

Search

Navigation Navigation
visualization

Routing Tiles

Indexies

We did something similar to
this pipeline. You can as well!

Q & A
Offline Navigation & Maps Engine

from scratch
@eukarpov
kmaps.co

TIME

http://kmaps.co

